
cert-manager security audit

In collaboration with the cert-manager maintainers, the Open

Source Technology Improvement Fund and the Cloud Native

Computing Foundation

Adam Korczynski, David Korczynski

2024-02-17

cert-manager security audit 2024-02-17

About Ada Logics

Ada Logics is a software security company founded in Oxford, UK, 2018 and is now based in London.
We are a team of dedicated, pragmatic security engineers and security researchers that work hands-on
with code auditing, security automation and security tooling.

We are committed open source contributors and we routinely contribute to state of the art security
tooling in the fuzzing domain such as advanced fuzzing tools like Fuzz Introspector and continuous
fuzzing with OSS-Fuzz. For example, we have contributed to fuzzing of hundreds of open source
projects by way of OSS-Fuzz. We regularly perform security audits of open source software and make
our reports publicly available with findings and fixes, and we have audited many of the most widely
used cloud native applications.

Ada Logics contributes to solving the challenge of securing the software supply-chain. To this end, we
develop the tooling and infrastructure needed for ensuring a secure software development lifecycle,
and we deploy these tools to critical software packages. On the tooling and infrastructure side, we
contribute to projects such as the OpenSSF Scorecard project as well as the Sigstore projects like SLSA
and Cosign.

Ada Logics helps some of the most exposed organisations secure their software, analyse their code
and increase security automation and assurance, and if you would like to consider working with us
please reach out to us via our website.

We write about our work on our blog. You can also follow Ada Logics on Linkedin, Twitter and Youtube.

Ada Logics ltd
71-75 Shelton Street,
WC2H 9JQ London,
United Kingdom

cert-manager security audit 1

https://github.com/ossf/fuzz-introspector
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/blog/fuzzing-100-open-source-projects-with-oss-fuzz
https://adalogics.com/contact
https://adalogics.com/blog
https://www.linkedin.com/company/ada-logics
https://twitter.com/ADALogics
https://www.youtube.com/channel/UC9AiX8FOiOpK6mNggXSamBg

cert-manager security audit 2024-02-17

Contents

About Ada Logics 1

Project dashboard 3

Executive Summary 4
Strategic recommendations . 4

cert-manager overview 6
Ingress . 7
Pod-to-Pod mTLS . 8

Threat Model 9
Threat actors . 10
Trust boundaries . 12

cert-manager dependencies 14
Supply-chain threat model . 14
Scorecard . 14
Scorecard findings . 17
Mitigation . 20
Conclusions . 20

Fuzzing 21
OSS-Fuzz infrastructure files . 21
Fuzzers . 21

Issues found 23
Approved maintainers can push code to cert-manager without a pull request 24
Use of deprecated third-party crypto APIs . 25
Large CloudFlare response can exhaust memory . 27
Loop iteration time controllable by input . 29
Redacted issue . 31
Servers are missing TimeOuts . 32
Webhook reads requests into memory unbounded . 34

PoC . 35
Out of Memory Denial of Service from malicious subject string 38

cert-manager security audit 2

cert-manager security audit 2024-02-17

Project dashboard

Contact Role Organisation Email

Adam
Korczynski

Auditor Ada Logics Ltd adam@adalogics.com

David
Korczynski

Auditor Ada Logics Ltd david@adalogics.com

Amir
Montazery

Facilitator OSTIF amir@ostif.org

Derek Zimmer Facilitator OSTIF derek@ostif.org

Helen Woeste Facilitator OSTIF helen@ostif.org

Ashley Davis cert-manager
maintainer

Venafi ashley_davis10419@hotmail.com

Tim Ramlot cert-manager
maintainer

Venafi tim.ramlot@venafi.com

Maël Valais cert-manager
maintainer

Venafi

Richard Wall cert-manager
maintainer

Venafi

Adam Talbot cert-manager
maintainer

Venafi

cert-manager security audit 3

cert-manager security audit 2024-02-17

Executive Summary

In late 2023 and early 2024, Ada Logics conducted a security audit of cert-manager. The goal of the
audit was to assess cert-managers code quality and its development and release practices. The audit
was facilitated by the Open Source Technology Improvement Fund (OSTIF) and funded by the Cloud
Native Computing Foundation.

Ada Logics began the engagement by formalizing a threat model for cert-manager. The threat model
was helpful to us as we audited the source code and development and release practices. Once we had
initiated the threat model, we continued iterating over it throughout the entire audit as we learned
more about the project. With the first version of the threat model, we began the manual review. In this
part of the audit, we looked at a range of threats to cert-manager and reviewed whether malicious
threat actors can escalate privileges in the code and during cert-managers development life cycle. We
found that cert-manager maintains high security standards, both in securing its code and defending
against malicious compromises during the software development life cycle.

In summary, during the engagement, we:

• Formalized a threat model of cert-manager
• Audited cert-manager code base and parts of third-party dependencies involved in critical exe-

cution paths.
• Integrated cert-manager into OSS-Fuzz.
• Audited cert-managers software development life cycle for supply-chain attacks.
• Documented the work in this report.

Strategic recommendations

The cert-manager community has done well to harden the projects code base and Software Develop-
ment Life Cycle (SDLC). Attackers look for weak links in systems, and one of the more noteworthy weak
links in cert-manager are its dependencies. Many of cert-managers dependencies lack many of the
qualities that cert-manager has in its own development practices, and as such, attackers have a wide
range of supply-chain attack vectors through cert-managers dependencies. We have documented this
in detail later in the report. We recommend that cert-manager implements a strategy for selecting and
evaluating third-party dependencies and how risks are mitigated. The strategy should enforce both a
set of minimum standards as well as a set of good-to-have practices that dependencies should improve
over time. A good starting point for this is to follow the Scorecard (https://github.com/ossf/scorecard)
check. The Scorecard tool implements a series of checks and provides a high-level score for a project
based on those checks. cert-manager could approach this in different ways:

1. cert-manager could require a minimum score for third-party dependencies.

cert-manager security audit 4

https://ostif.org
https://www.cncf.io/
https://www.cncf.io/
https://github.com/ossf/scorecard

cert-manager security audit 2024-02-17

2. cert-manager could require a minimum score AND require certain checks to be fulfilled, for
example that a dependency MUST score 5.0 and also include a security policy and run static
analysis tools.

This process can take time, and it should be treated as an ongoing effort to secure cert-managers
supply chain. cert-manager could track this ongoing work in a public GitHub issue and regularly review
the requirements.

cert-manager security audit 5

cert-manager security audit 2024-02-17

cert-manager overview

Cert-manager manages certificates in cloud-native environments. It can issue and renew X.509 certifi-
cates in a flexible manner, so DevOps teams can apply TLS to their workloads. cert-manager implements
CRDs for certificate issuers and certificates with the goal of simplifying the workflows for obtaining,
renewing and using certificates in the cloud. cert-manager can make the certificates available in the
cluster via secrets or at the nodes file system when users deploy the cert-manager CSI Driver. At a high
level, the architecture looks as such:

Figure 1: cert-manager overview

In the middle of this overview, we have cert-manager. At the top are the issuers, below cert-manager
are the certificates that cert-manager stores and manages, and at the bottom we have the secrets that
store the keys. This demonstrates the scope of cert-managers cores operations at a high level.

Cert-manager has a series of built-in issuers such as Let’sEncrypt, Vault and Venafi. Users add new
issuers by way of the Issuer resource type:

1 apiVersion: cert-manager.io/v1
2 kind: Issuer
3 metadata:
4 name: ca-issuer
5 namespace: mesh-system
6 spec:
7 ca:

cert-manager security audit 6

cert-manager security audit 2024-02-17

8 secretName: ca-key-pair

This is the example from the cert-manager documentation on the Issuer resource type. This issuer
signs certificates with a private key. The ca-key-pair secret stores a certificate that consumers can
use to trust signed certificates by this issuer.

Cert-manager is a general-purpose tool that serves a lot of different use cases. It is designed to be
flexible and adaptable to a series of different use cases rather than a fixed set of use cases. Below, we
look at two examples of using cert-manager. The purpose of including these examples is to illustrate
the core use cases of cert-manager to present the context for the security model of cert-manager.

Ingress

The most common, and arguably also the most straightfoward way to use cert-manager is to secure
Ingress resources in Kubernetes. This allows users to communicate with an endpoint over HTTPs
instead of the insecure HTTP. Without HTTPs, users will see the warning in their browser when they
resolve to the endpoint:

Figure 2: Example of website missing a certificate

cert-manager makes it easy to add a certificate and specify the issuer for an Ingress resource. Users
can specify the issuers by way of annotations and the TLS data in the Ingress spec. The below example
is from “Project Maintainers Explain cert-manager in 5 Levels of Difficulty - Tim Ramlot, Maël Valais &
Ashley Davis, Venafi” (https://www.youtube.com/watch?v=OxGWG6CD1iU):

cert-manager security audit 7

https://cert-manager.io/docs/concepts/issuer/

cert-manager security audit 2024-02-17

1 apiVersion: networking.k8s.io/v1
2 kind: Ingress
3 metadata:
4 creationTimestamp: "2023-11-02T18:24:06Z"
5 generation: 2
6 name: example-ingress
7 namespace: default
8 resourceVersion : "1908"
9 uid: 8ca83e2b-4ada-9f24-ca5102855132

10 spec:
11 rules:
12 - host: example.com
13 http:
14 paths:
15 - backend:
16 service:
17 name: bar-service
18 port:
19 number: 8080
20 path: /bar
21 pathType: Prefix
22 tls:
23 - hosts:
24 - example.com
25 secretName: example-com-tls

After adding this configuration to the Ingress resource, the endpoint will communicate over HTTPs.

Pod-to-Pod mTLS

Another use case of cert-manager is Pod-to-Pod mTLS. In this scenario, the goal is to enable secure
communication between Pods such that when one pod (Pod A) communicates with other pods (Pod
B), this happens over a secure connection. By default, Pods communicate with other Pods over HTTP
in Kubernetes. An example of this use case could be when processing sensitive information from a
database. Users can enable mTLS between a client and the database to avoid man-in-the-middle
attacks on data in transit. For an example of configuring this, see https://venafi.com/blog/securing-
mysql-with-cert-manager/.

These were two examples of cert-manager use cases, and while these are two widely used cases for
cert-manager, cert-manager was not designed just to be used against ingress traffic or pod-to-pod
mTLS communication. Rather, cert-manager is a management tool that handles several tedious parts
of obtaining and managing certificates. In the next section, we will look at cert-managers threat model.
In the threat model we consider the threats against cert-managers core functionality, i.e. obtaining
and managing certificates.

cert-manager security audit 8

cert-manager security audit 2024-02-17

Threat Model

In this section we detail attack vectors, attack scenarios and threat actors that shape cert-managers
threat model.

cert-managers threat model inherits from the threat model of obtaining certificates from issuers. Many
of these parts have been schematized and documented, and cert-manager must adhere to these
practices. The practices of obtaining certificates that are documented by third parties - for example,
have not been in scope of this audit. In other words, we have not audited the general practices of
obtaining certificates. We found cases of cert-manager not using best security practices at certain places.
However, cert-manager followed the standards recommended by the third parties that cert-manager
was interacting with. We have not included these cases as findings in this report.

A core part of cert-managers use case is the automation of issuing and maintaining valid SSL/TLS
certificates which itself is an enabler for secure communication. Eliminating cert-managers core
functionality has an impact on the communication to/between the users services. A goal for an attacker
is to cause disruption to cert-manager in such a way that it impacts the availability of certificates to the
user. To achieve this, an attacker can attempt this if they:

• compromise the availability of the certificates directly
• compromise the availability of cert-manager such that the user cannot retrieve certificates
• compromise underlying artifacts necessary to obtain and manage certificates such as secrets.

The root cause of issues that can cause such disruption can exist in cert-manager itself - i.e. in the
form of code vulnerabilities that an attacker can trigger. As such, the point of failure can be inside
cert-manager code base. Another failure point is in cert-managers interaction with an issuer, and threat
actors can seek to prevent cert-manager from correctly interacting with an issuer, thereby preventing
cert-manager from obtaining certificates. For example, an attacker could attempt to trigger a rate
limit between cert-manager and Let’sEncrypt, such that cert-manager will be prevented from sending
legitimate requests at a limited time after hitting the rate limit. This can, for example, be a viable attack
vector for both obtaining new certificates as well as renewing them. Another type of attack could be
if an attacker is able to initiate a request to the issuer and at the same time prevent cert-manager
from storing the issued certificate, cert-manager can be prompted to request another one shortly
thereafter.

Some cert-manager use cases involve ingress traffic - often from untrusted sources. This enables
an attack vector through the ingress endpoint from the Internet. This is not a hidden attack vector
or one that is exposed for certain non-user-supported activities such as checking the application
health, collecting logs, and checking for and getting updates from third-party providers; rather, it is an
entrypoint that handles requests from untrusted users.

cert-manager security audit 9

cert-manager security audit 2024-02-17

Another attack vector is the transit point between cert-manager and the remote services it communi-
cates with, such as the issuers. In many cases, cert-manager will communicate with issuers and other
services over HTTP(s) calls, which have the potential for MitM threats. A threat actor could seek to place
themselves between cert-manager and an issuer and either sniff traffic, steal confidential information
or attempt to manipulate the data cert-manager receives from the issuer.

The above attack vectors are exposed at runtime. cert-manager also faces a series of threats prior to its
deployment to a cluster. These are threats to cert-managers supply-chain and can have just as critical
an impact as runtime threats. cert-managers supply-chain refers to its source code management,
packaging and release process. In this audit we conduct a review of the threats against cert-managers
supply chain. To this end, we follow the SLSA threat model (https://slsa.dev/spec/v1.0/threats-
overview).

Threat actors

In this section, we consider the threat actors that could impact cert-manager. cert-managers core
functionality is to request, obtain and manage certificates, and as such, we consider cert-manager
to operate in a trusted environment, to a large extent. The input to cert-manager will, in very rare
occasions, come directly from untrusted users. Rather, untrusted users need to get their input through
other components that communicate with cert-manager. In many cases, an untrusted user needs to
elevate privileges to place themselves in an attacking position, and at that point, they are not fully
untrusted but rather an untrusted user with elevated privileges. That being said, cert-manager acts
on triggers from data from untrusted sources, and untrusted users are undoubtedly part of the threat
model as a result.

We also consider untrusted users to have an impact on the supply-chain side. From the perspective of
cert-manager, contributors and threat actors for cert-managers supply-chain can be fully untrusted
and still impact cert-managers security. In the summary table below we distinguish between fully
untrusted threat actors at runtime and in cert-managers supply-chain.

Another user group are other users in the cluster with limited privileges. Some users may have privileges
to configure certain services but not other parts of the cluster, such as secrets. cert-manager must guard
itself against accidental security compromises towards these users, as well as deliberate attempts by
these users to escalate privileges.

A threat actor is a person or group of people that can have an impact of cert-managers security posture.
Being able to impact cert-manager does not mean that they are malicious. In fact, most actors in
the cert-manager ecosystem and production deployments are not malicious. An actor becomes a
threat once they decide to attempt or actually carry out malicious actions against cert-manager and its
users. The reason we list cert-managers threat actors is not for cert-manager to remove these from its

cert-manager security audit 10

https://slsa.dev/spec/v1.0/threats-overview
https://slsa.dev/spec/v1.0/threats-overview

cert-manager security audit 2024-02-17

lifecycle or usage. Rather, cert-manager should mitigate the risk for these in its processes and at the
code level.

Threat Actor Description Level of trust

1 cert-manager
contributors

cert-manager is an open-source project that accepts
code contributions from community members.
Community members need a GitHub profile to open pull
requests. Anyone can create a GitHub profile and remain
anonymous. In addition, community members in some
open-source communities can build up trust over time
by working on legitimate issues and features of the
project and still remain anonymous. This enables an
attack surface of weakening cert-managers security
posture by way of code contributions through its source
code management. Malicious users can make attempts
to intentionally commit code that contains security
vulnerabilities.

Low to high

2 Untrusted users
outside of
cluster

cert-manager will often be deployed in use cases that
process input from untrusted internet users. These users
can attempt to compromise cert-manager at runtime.

Low

3 Limited-
privilege cluster
users

Cluster admins can configure their clusters so that
certain users have specific permissions limited to the
tasks they need to perform and don’t have permissions
for other tasks. These users can attempt to utilize their
existing privileges to escalate their them to a higher
level.

cert-manager security audit 11

cert-manager security audit 2024-02-17

Threat Actor Description Level of trust

4 cert-manager
maintainers

cert-managers maintainers are users in cert-managers
software development life cycle with elevated
permissions. A maintainer can become malicious for
many reasons - monetary, political, personal - and they
can use their permissions to cause damage to
cert-managers users. Open-source software has had
cases of maintainers turning against the users; From the
users perspective there is a risk of a maintainer having
an incentive to turn against the users, and some users
may need additional mitigation. CVE-2022-23812 was a
vulnerability deliberately added by a maintainer to hurt
certain users. This is merely a reference to the impact a
maintainer with full rights can have. Obviously, the
maintainers trust level is high, and it is a rare case that
maintainers turn against the users.

High

5 Third-party
contributors

Third-party contributors have a similar risk level to
threat actor #1 “cert-manager contributors”, only in this
case, untrusted users contribute malicious code to
dependencies to cert-manager with the purpose of
hurting cert-manager users.

Low

6 Third-party
maintainers

Third-party maintainers have a similar risk level to threat
actor #4 “cert-manager maintainers”, only in this case,
maintainers of third-party dependencies can commit
malicious code to their own projects with the purpose of
weakening cert-manager users. Third-party maintainers
are untrusted from the perspective of cert-manager.

Low

Trust boundaries

In this section, we enumerate the trust boundaries in cert-manager. A trust boundary is a point in a
code base where trust changes at runtime. Trust will either increase or decrease at trust boundaries.
For example, in general, trust of a user-provided request will increase after it has been validated.

cert-manager has one direct trust boundary, namely at the contact point between cert-manager and
the issuers. This trust boundary exists in all cert-manager use cases. Here, when cert-manager sends a

cert-manager security audit 12

cert-manager security audit 2024-02-17

request to the issuer, trust decreases in the direction from cert-manager to the issuer, and when the
issuer responds to the request, trust increases. This is illustrated in the diagram below:

Figure 3: cert-manager trust flow.

Input to cert-manager goes through the Kubernetes cluster, and as such, cert-manager relies Kuber-
netes’ validation of the input. As a result, attackers need to manifest their position somewhere in the
ecosystem that surrounds cert-manager such as the issuers, the transit between cert-manager and the
issuers, the cluster or cert-managers supply chain. This limits attacks from fully untrusted users.

cert-manager security audit 13

cert-manager security audit 2024-02-17

cert-manager dependencies

In this section, we evaluate cert-managers supply-chain risk of cert-manager through its dependency
tree. The purpose is not to audit cert-managers third-party dependencies. The supply-chain itself is an
attack surface for cert-manager, through which attackers can weaken cert-managers dependencies
and thereby weaken cert-manager. cert-manager uses third-party dependencies, and in this section we
analyze the development practices of these dependencies as well as the ease with which an attacker
can weaken cert-manager through its dependencies. We perform a high-level risk analysis of cert-
managers dependencies. We want to consider how exposed cert-managers dependencies are to attacks
that would affect cert-manager at runtime. For example, an attacker can introduce a vulnerability to
a third-party dependency that cert-manager will be affected by. We consider a supply-chain threat
model that is designed around known, real-world attacks on open- and closed-source projects, and as
such, we evaluate the risk of similar attacks against cert-managers dependencies.

We wish to highlight that it might be out of scope for the maintainers of the projects listed below
to ensure that they mitigate Scorecard findings. We do not wish to shame any project maintainers
or dictate what they should do with their projects. Our goal is to highlight the supply-chain risk of
cert-manager.

Supply-chain threat model

In this section we follow the SLSA supply-chain threat model which outlines the following model of the
supply-chain and its attack surface:

At a high level, this diagram displays the standard software development lifecycle (SDLC) that most
projects follow: One or more developers contribute to the source code (“Source”) that gets built into
a consumable artifact (“Build”) and distributed to a package registry (“Package”) from where users
download it and consume it. The source code will likely have other dependencies that the builder pulls
in while building the source code. Each of the red pointers shows an attack surface for the SDLC that is
described in detail and with examples here: https://slsa.dev/spec/v1.0/threats. In our analysis of cert-
managers supply-chain we consider mainly source code maintenance (“Source”) and dependencies
(“Dependencies”). The Go package manager handles the building and packaging of cert-managers
dependencies, and the Go package manager is not in scope of this audit.

Scorecard

We use the Scorecard tool to get an overview of cert-managers dependencies. Scorecard provides a
precise, easily digestable overview of supply-chain risks based on a series of different checks. We ran

cert-manager security audit 14

https://slsa.dev/spec/v1.0/threats
https://slsa.dev/spec/v1.0/threats

cert-manager security audit 2024-02-17

Figure 4: SLSA threat model

cert-manager security audit 15

cert-manager security audit 2024-02-17

Scorecard on cert-managers direct dependencies from its go.mod files. We did not include the go.mod
files from cert-managers ./test directory. These were the go.mod files we analyzed:

1. cmd/startupapicheck/go.mod
2. cmd/acmesolver.go.mod
3. ./cmd/cainjector/go.mod
4. ./cmd/webhook/go.mod
5. ./cmd/controller/go.mod
6. ./go.mod

From each go.mod file, we accumulated non-Kubernetes, non-Golang-X packages, and we excluded
dependencies used only in tests. We ran Scorecard on each of the selected packages. Below, we
included the raw findings in table format, followed by the risk this implies for cert-manager. The results
can be reproduced by following the steps here: https://github.com/ossf/scorecard?tab=readme-ov-
file#basic-usage.

Project Number Package

1 github.com/spf13/cobra

2 github.com/spf13/pflag

3 github.com/go-logr/logr

4 github.com/Azure/azure-sdk-for-go

5 github.com/Venafi/vcert

6 github.com/akamai/AkamaiOPEN-edgegrid-golang

7 github.com/aws/aws-sdk-go-v2

8 github.com/aws/smithy-go

9 github.com/cpu/goacmedns

10 github.com/digitalocean/godo

11 github.com/go-ldap/ldap/v3

12 github.com/google/gnostic-models

13 github.com/hashicorp/vault

14 github.com/kr/pretty

15 github.com/miekg/dns

16 github.com/pavlo-v-chernykh/keystore-go

cert-manager security audit 16

cert-manager security audit 2024-02-17

Project Number Package

17 github.com/pkg/errors

18 github.com/prometheus/client_golang

19 gomodules.xyz/jsonpatch

20 software.sslmate.com/src/go-pkcs12

Scorecard findings

We have summarized the raw results of the Scorecard analysis runs in the table below. For brevity, we
have abbreviated each check in the following way:

• BA: Binary Artifacts
• BP = Branch Protection
• CIT = CI Tests
• CII = CII Best Practices
• CR = Code Review
• C = Contributors
• DW = Dangerous Workflow
• DUT = Dependency Update Tool
• F = Fuzzing
• L = License
• M = Maintained
• P = Packaging
• PD = Pinned Dependencies
• S = SAST
• SP = Security Policy
• SR = Signed Releases
• TP = Token Permissions
• V = Vulnerabilities

The table below shows the aggregate score of each of the dependencies listed above. The table is listed
by the aggregate score.

cert-manager security audit 17

https://github.com/ossf/scorecard/blob/main/docs/checks.md#binary-artifacts
https://github.com/ossf/scorecard/blob/main/docs/checks.md#branch-protection
https://github.com/ossf/scorecard/blob/main/docs/checks.md#branch-protection
https://github.com/ossf/scorecard/blob/main/docs/checks.md#cii-best-practices
https://github.com/ossf/scorecard/blob/main/docs/checks.md#code-review
https://github.com/ossf/scorecard/blob/main/docs/checks.md#contributors
https://github.com/ossf/scorecard/blob/main/docs/checks.md#dangerous-workflow
https://github.com/ossf/scorecard/blob/main/docs/checks.md#dependency-update-tool
https://github.com/ossf/scorecard/blob/main/docs/checks.md#fuzzing
https://github.com/ossf/scorecard/blob/main/docs/checks.md#license
https://github.com/ossf/scorecard/blob/main/docs/checks.md#maintained
https://github.com/ossf/scorecard/blob/main/docs/checks.md#packaging
https://github.com/ossf/scorecard/blob/main/docs/checks.md#pinned-dependencies
https://github.com/ossf/scorecard/blob/main/docs/checks.md#sast
https://github.com/ossf/scorecard/blob/main/docs/checks.md#security-policy
https://github.com/ossf/scorecard/blob/main/docs/checks.md#signed-releases
https://github.com/ossf/scorecard/blob/main/docs/checks.md#token-permissions
https://github.com/ossf/scorecard/blob/main/docs/checks.md#vulnerabilities

cert-manager security audit 2024-02-17

Proj # Aggr BA BP CIT CII CR C DW DUT F L M P PD S SP SR TP V

13 7.5 10 8 10 0 10 10 10 10 10 9 10 ? 4 8 10 ? 0 0

3 7.3 10 3 10 0 10 10 10 10 0 10 10 ? 6 4 10 ? 10 0

4 7.1 10 8 10 0 10 10 10 10 0 10 10 ? 0 0 10 ? 10 0

18 6.9 10 5 10 0 10 10 10 10 0 10 10 ? 5 9 9 ? 0 2

10 6.6 10 8 10 0 10 10 10 10 0 9 10 ? 0 0 0 ? 0 10

15 6.4 10 3 8 0 7 10 10 10 10 10 10 ? 0 9 0 ? 0 3

1 6 10 1 10 0 10 10 10 10 0 10 10 ? 0 0 0 ? 10 0

6 5.8 10 8 10 0 10 10 10 10 0 10 10 ? 0 0 0 ? 0 0

11 5.8 10 3 10 0 7 10 10 10 10 9 10 ? 0 3 0 ? 0 0

8 5.2 9 6 10 0 6 10 10 0 0 10 10 ? 0 0 10 ? 0 3

5 5 10 6 0 0 10 10 ? 0 0 10 10 ? 0 0 9 0 ? 6

19 4.6 10 8 1 0 2 10 10 0 10 10 0 ? 0 0 0 ? 0 10

7 4.3 9 6 ? 0 0 10 10 0 0 10 10 ? 0 0 0 ? 0 0

14 3.9 10 3 0 0 6 6 10 10 0 10 0 ? 0 0 0 ? 0 0

12 3.4 10 0 0 0 7 0 10 0 0 10 0 ? 3 0 10 ? 0 0

17 3.2 10 3 0 0 2 6 ? 0 0 10 0 ? ? 0 0 ? 0 10

9 2.8 10 3 0 0 1 10 10 0 0 10 0 ? 0 0 0 ? 0 0

2 2.5 10 0 0 0 7 10 ? 0 0 10 0 ? ? 0 0 ? ? 0

16 2.3 10 0 0 0 1 0 10 0 0 10 1 ? 0 0 0 ? 0 0

20 2.0 10 0 0 0 0 10 ? 0 0 10 0 ? ? 0 0 ? 0 2

Out of the 20 dependencies listed, 3 score over 7, 4 score 6-7, 4 score 5-6, and the rest are below 6.
At a high level, this indicates that around half of cert-managers dependencies don’t work actively on
mitigating the threats modelled by Scorecard. Projects may have reasons not to fulfill all of Scorecards
checks, but ideally, these should be exceptions to an otherwise well-managed posture that score well
overall.

All dependencies exclude insecure binary artifacts from their source tree; All score 10 with the exception
of 2 libraries that score 9 in the Binary Artifact check. In general, most dependencies have a healthy
stream of contributions and avoid dangerous GitHub workflows. Most dependencies also have a license.

cert-manager security audit 18

cert-manager security audit 2024-02-17

The Dangerous Workflow check is the only non-experimental critical Scorecard check, and it is positive
that all projects either don’t have GitHub workflows or they a safe. The Scorecard risk category below
“Critical” is “High”, in which the following checks fall:

• Binary Artifacts: Does the dependency have executable (binary) artifacts in the source repository?
• Branch Protection: Are the dependencies’ default and release branches are protected with

GitHub’s branch protection settings?
• Code Review: Does the dependency perform manual, human code review before merging in

code?
• Dependency Update Tool: Does the dependency use an automatic dependency updater?
• Maintained: Is the dependency actively maintained? Includes a check of whether the dependency

is archived.
• Signed Releases: Does the dependency sign releases? This is less important for the Go ecosystem.
• Token Permissions: Do the dependencies’ workflow tokens follow the principle of least privilege?
• Vulnerabilities: Does the dependency have open, unfixed vulnerabilities in its own code base or

in its own dependencies?

All dependencies perform well in the binary artifact check but less so in the rest of the checks. The lack of
secure branch protection settings makes the dependency susceptible to malicious code contributions
from both third-party contributors as well as maintainers that intentionally or mistakenly add malicious
code to the source. This is an attack vector at the source code maintenance level from the SLSA SDLC
threat model. The Scorecard Code Review check is also part of the source code maintenance, and
several dependencies also score low here, indicating that not all pull requests undergo formal code
review processes. As such, several dependencies are not hardened against malicious maintainers or
third-party contributors getting malicious code into the dependencies’ source code.

Also in the source code maintenance category are the Dependency Update Tool and Maintained
Scorecard checks. A few of the dependencies score “0” in the maintained check, indicating that
they are not actively maintained or they are archived. In such cases, the dependencies are unlikely
to fix bugs and security vulnerabilities on an ongoing basis. If a cert-manager threat actor finds a
vulnerability in an unmaintained or archived project, they are likely to have more time to exploit the
vulnerability than if the project was actively maintained.

Lack of an automated dependency update tool makes the dependencies prone to missing out on
security updates since the project maintainers have to manually check for security updates in their
own dependency tree. In addition, a contributor or even a malicious maintainer can manually add a
version of a dependency that contains vulnerabilities, and the project itself will not recognize that.

“Token permissions” is another category that Scorecard considers to be high risk. In this check, Score-
card evaluates the permissions in the projects workflows. The majority of cert-managers dependencies
have granted excessive privileges to their workflows, which puts them at risk of untrusted users reading

cert-manager security audit 19

cert-manager security audit 2024-02-17

sensitive data or even overwriting artifacts in the repository, such as pre-submit checks.

The last high-risk check in Scorecard is for vulnerabilities which from a high level evaluates whether
the dependency has known vulnerabilities in its source tree including dependencies. This is naturally
prone to false positives, as the vulnerability may exist in a dependency’s code path that a given project
does not invoke. That being said, using a vulnerable version of a dependency can be a disaster waiting
to happen. An attacker could introduce new functionality that invokes vulnerable code paths without
changing the dependency.

Mitigation

By the completion of this security audit, cert-manager has removed three low-scoring dependencies:

1. github.com/pkg/errors has been removed in https://github.com/cert-manager/cert-
manager/pull/6793

2. github.com/go-ldap/ldap/v3 in https://github.com/cert-manager/cert-manager/pull/6
761

3. gomodules.xyz/jsonpatch in https://github.com/cert-manager/cert-manager/pull/6455

Conclusions

cert-manager depends on just a few direct third-party dependencies and has limited its third-party
attack surface by limiting the number of dependencies. Of the dependencies cert-manager consumes,
a significant amount employs SDLC practices that are far below cert-managers own SDLC practices,
and as such, they are much easier targets than cert-manager. Several of cert-managers dependencies
are susceptible to high-risk attacks against its source code. This impacts the security posture of cert-
manager with an unmitigated attack-surface. We recommend that cert-manager reviews the criteria
for its third-party dependencies, and if dependencies with low levels of supply-chain risk mitigation
are necessary, we recommend that cert-manager makes it their responsibility to mitigate those risks
on behalf of the third-party dependency.

cert-manager security audit 20

https://github.com/cert-manager/cert-manager/pull/6793
https://github.com/cert-manager/cert-manager/pull/6793
https://github.com/cert-manager/cert-manager/pull/6761
https://github.com/cert-manager/cert-manager/pull/6761
https://github.com/cert-manager/cert-manager/pull/6455

cert-manager security audit 2024-02-17

Fuzzing

During the audit, Ada Logics set up continuous fuzzing for cert-manager by integrating cert-manager
into OSS-Fuzz, Googles open-source project for fuzzing critical open-source software at scale. The
integration included the necessary infrastructure files and two fuzzers for two utility APIs in cert-
managers pki package.

OSS-Fuzz runs the fuzzers of its integrated projects with excessive hardware, thereby achieving runtime
stats that most projects cannot achieve by their own means. In addition, OSS-Fuzz handles the entire
fuzzing workflow efficiently and automatically; as projects add more fuzzers to test their code, the
management of running these efficiently becomes increasingly complex and time-consuming. Without
infrastructure such as OSS-Fuzz’s, projects can easily run their fuzzing suites inefficiently and lose out
on important benefits from their fuzzers. This was commonly seen in the early days of OSS-Fuzz.

With cert-managers integration, OSS-Fuzz will run cert-managers fuzzers periodically in a continuous
manner, i.e. for as long as cert-manager remains integrated in OSS-Fuzz. OSS-Fuzz reports found issues
to the cert-manager team with reproducer test cases and stack traces. The cert-manager team has 90
days to fix the issue before it becomes public, and if the team fixes the issue before the 90 day deadline,
OSS-Fuzz will automatically close the report in its bug tracker and make the report public.

OSS-Fuzz continues to implement the latest techniques of fuzzing, and as such, cert-managers fuzzing
efforts will inherit the latest research that OSS-Fuzz adds.

The source assets made for cert-managers fuzzing efforts are:

OSS-Fuzz infrastructure files

1. Dockerfile: https://github.com/google/oss-fuzz/blob/master/projects/cert-manager/Dockerfile.
Builds the base image required to build the cert-manager fuzzers.

2. build.sh: https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49
790e449e/projects/cert-manager/build.sh. Builds the cert-manager fuzzers.

3. project.yaml: https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04b
ef49790e449e/projects/cert-manager/project.yaml. Holds metadata about the project and who
to report findings to.

Fuzzers

Both fuzz tests written during the audit are in pki_fuzzer.go (https://github.com/google/oss-
fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/pki_fuzzer.go):

cert-manager security audit 21

https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/Dockerfile
https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/build.sh
https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/build.sh
https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/project.yaml
https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/project.yaml
https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/pki_fuzzer.go
https://github.com/google/oss-fuzz/blob/163e36a5b15e2d9fd5f05b87f04bef49790e449e/projects/cert-manager/pki_fuzzer.go

cert-manager security audit 2024-02-17

The two fuzzers target the following APIs:

Fuzzer name Target API

1 FuzzParseSubjectStringToRawDERBytes ParseSubjectStringToRawDERBytes

2 FuzzDecodePrivateKeyBytes DecodePrivateKeyBytes

cert-manager security audit 22

https://github.com/cert-manager/cert-manager/blob/a22d1d673ae8c16733ed342d4330eb5f5ab3f016/pkg/util/pki/subject.go#L131
https://github.com/cert-manager/cert-manager/blob/a22d1d673ae8c16733ed342d4330eb5f5ab3f016/pkg/util/pki/parse.go#L29

cert-manager security audit 2024-02-17

Issues found

In this section we present the issues that we identified during the audit. cert-manager have fixed all
reported issues by the end of the security audit.

ID Title Severity Status

1 ADA-2023-CERTMAN-1 Approved maintainers can push code
to cert-manager without a pull request

Low Fixed

2 ADA-2023-CERTMAN-2 Use of deprecated third-party crypto
APIs

Low Fixed

3 ADA-2023-CERTMAN-3 Large CloudFlare response can
exhaust memory

Informational Fixed

4 ADA-2023-CERTMAN-4 Loop iteration time controllable by
input

Low Fixed

5 ADA-2023-CERTMAN-5 Redacted issue Low Fixed

6 ADA-2023-CERTMAN-6 Servers are missing TimeOuts Low Fixed

7 ADA-2023-CERTMAN-7 Webhook reads requests into memory
unbounded

Moderate Fixed

8 ADA-2023-CERTMAN-8 Out of Memory Denial of Service from
malicious subject string

Moderate Fixed

cert-manager security audit 23

cert-manager security audit 2024-02-17

Approved maintainers can push code to cert-manager without a pull request

Severity Low

id ADA-2023-CERTMAN-1

component cert-manager SDLC

This is a report of a risk rather than an issue.

cert-manager allows approved maintainers to push code directly to cert-managers code repository
without requiring a pull request. This eliminates a guard for cases where a maintainer wishes or is
impersonated to cause harm to cert-managers users.

The recommended practice is to prevent any user from pushing code directly to the source repository.
Open source software has seen examples of maintainers turning malicious and adding code to a
library under their control that will harm users (CVE-2022-23812). Allowing code to be force-pushed
directly to cert-managers main branch makes it difficult to determine which versions of the code base
is secure and which are vulnerable, in case a malicious maintainer force pushes vulnerable code to
cert-manager.

There are many incentives to do this. In the case of the aforementioned CVE-2022-23812, the maintainer
had political reasons, but in other cases, a maintainer can receive a financial reward or can act on
a personal grudge against users or the project itself. Maintainers can also be tricked into pushing
malicious code to fix a bug quickly, or an attacker can steal the manintainers credentials and act with
their privileges.

In cert-managers case, we have not found a case of a maintainer force-pushing malicious code directly
to cert-managers main branch. This issue reports a risk in cert-managers software development life
cycle that threat actors can seek to attack.

We recommend enabling the “Require a pull request before merging” setting in cert-managers branch
protection ruleset.

cert-manager security audit 24

cert-manager security audit 2024-02-17

Use of deprecated third-party crypto APIs

Severity Low

id ADA-2023-CERTMAN-2

component Certificate issuing

The internal APIs encodePKCS12Keystore and encodePKCS12Truststore uses deprecated
third-party APIs for encoding keystores. The function body of each API decodes the necessary data and
passes that data onto a third-party API that handles the encoding.

encodePKCS12Keystore:

42 func encodePKCS12Keystore(password string, rawKey []byte, certPem []
byte, caPem []byte) ([]byte, error) {

43 key, err := pki.DecodePrivateKeyBytes(rawKey)
44 if err != nil {
45 return nil, err
46 }
47 certs, err := pki.DecodeX509CertificateChainBytes(certPem)
48 if err != nil {
49 return nil, err
50 }
51 var cas []*x509.Certificate
52 if len(caPem) > 0 {
53 cas, err = pki.DecodeX509CertificateChainBytes(caPem)
54 if err != nil {
55 return nil, err
56 }
57 }
58 // prepend the certificate chain to the list of certificates as the

PKCS12
59 // library only allows setting a single certificate.
60 if len(certs) > 1 {
61 cas = append(certs[1:], cas...)
62 }
63 return pkcs12.Encode(rand.Reader, key, certs[0], cas, password)
64 }

encodePKCS12Truststore:

66 func encodePKCS12Truststore(password string, caPem []byte) ([]byte,
error) {

67 ca, err := pki.DecodeX509CertificateBytes(caPem)
68 if err != nil {

cert-manager security audit 25

https://github.com/cert-manager/cert-manager/blob/630dba760af27b38daa778694bf3f958a1e5ad23/pkg/controller/certificates/issuing/internal/keystore.go#L42-L64
https://github.com/cert-manager/cert-manager/blob/630dba760af27b38daa778694bf3f958a1e5ad23/pkg/controller/certificates/issuing/internal/keystore.go#L66-L74

cert-manager security audit 2024-02-17

69 return nil, err
70 }
71
72 var cas = []*x509.Certificate{ca}
73 return pkcs12.EncodeTrustStore(rand.Reader, cas, password)
74 }

Both software.sslmate.com/src/go-pkcs12.Encode and software.sslmate.com/
src/go-pkcs12.EncodeTrustStore are deprecated. Deprecated APIs undergo less - if any -
maintenance and may not be in scope of security patches. As such, they pose a risk to cert-manager,
and we recommend replacing them with non-deprecated APIs.

cert-manager security audit 26

cert-manager security audit 2024-02-17

Large CloudFlare response can exhaust memory

Severity Informational

id ADA-2023-CERTMAN-3

component cloudflare package

When cert-manager sends a request to CloudFlare, a malicious response can the machines memory, if
it is sufficiently large. The root cause of the issue is that cert-manager reads the response body entirely
into memory.

While responses from CloudFlare are trusted, cert-manager does not validate the response before
reading it into memory, and as such the response may not be trusted, when cert-manager reads it into
memory.

On line 252, cert-manager creates the request. On line 270, cert-manager sends the request, and on
line 278, a large response body can trigger an out-of-memory condition:

Source:

252 req, err := http.NewRequest(method, fmt.Sprintf("%s%s",
CloudFlareAPIURL, uri), body)

253 if err != nil {
254 return nil, err
255 }
256
257 if c.authEmail != "" {
258 req.Header.Set("X-Auth-Email", c.authEmail)
259 }
260 if c.authToken != "" {
261 req.Header.Set("Authorization", "Bearer "+c.authToken)
262 } else {
263 req.Header.Set("X-Auth-Key", c.authKey)
264 }
265 req.Header.Set("User-Agent", c.userAgent)
266
267 client := http.Client{
268 Timeout: 30 * time.Second,
269 }
270 resp, err := client.Do(req)
271 if err != nil {
272 return nil, fmt.Errorf("while querying the Cloudflare API for %

s %q: %v", method, uri, err)
273 }

cert-manager security audit 27

https://github.com/cert-manager/cert-manager/blob/cf8421e13f836f3abae415e503840ae51304214e/pkg/issuer/acme/dns/cloudflare/cloudflare.go#L252-L281

cert-manager security audit 2024-02-17

274
275 defer resp.Body.Close()
276
277 var r APIResponse
278 err = json.NewDecoder(resp.Body).Decode(&r)
279 if err != nil {
280 return nil, err
281 }

To exploit this, an attacker needs to escalate their privileges. They need to either carry out a MitM
attack, control the URL to which cert-manager sends the request or compromise Cloudflare. All these
positions are expensive to achieve but possible. With a high enough reward, and attacker may seek to
exploit this issue.

We recommend implementing a reasonable limit to the size of the response body that cert-manager
reads into memory.

cert-manager security audit 28

cert-manager security audit 2024-02-17

Loop iteration time controllable by input

Severity Low

id ADA-2023-CERTMAN-4

component Certificate issuing

cert-manager is susceptible to a limited denial of service from a long certificate chain. The root cause
is that cert-manager performs excessive loops over the input chain, and a chain containing a high
number of certificates can cause cert-manager to loop for an excessive amount of time.

An attacker can exploit this by making cert-manager be stuck in a long loop thereby denying the process
from finishing which results in denial of service for other users.

The vulnerable API is ParseSingleCertificateChain (https://github.com/cert-manager/cert-
manager/blob/cf8421e13f836f3abae415e503840ae51304214e/pkg/util/pki/parse.go#L186C6-
L186C33). It carries out several loops through certs - the input certificate chain.

First it filters out duplicates (source):

190 for i := 0; i < len(certs)-1; i++ {
191 for j := 1; j < len(certs); j++ {
192 if i == j {
193 continue
194 }
195 if certs[i].Equal(certs[j]) {
196 certs = append(certs[:j], certs[j+1:]...)
197 }
198 }
199 }

Next, it loops through the filtered certificates again (source):

214 for {
215 // If a single list is left, then we have built the entire

chain. Stop
216 // iterating.
217 if len(chains) == 1 {
218 break
219 }
220
221 // lastChainsLength is used to ensure that at every pass, the

number of
222 // tested chains gets smaller.

cert-manager security audit 29

https://github.com/cert-manager/cert-manager/blob/cf8421e13f836f3abae415e503840ae51304214e/pkg/util/pki/parse.go#L190-L199
https://github.com/cert-manager/cert-manager/blob/cf8421e13f836f3abae415e503840ae51304214e/pkg/util/pki/parse.go#L214-L247

cert-manager security audit 2024-02-17

223 lastChainsLength := len(chains)
224 for i := 0; i < len(chains)-1; i++ {
225 for j := 1; j < len(chains); j++ {
226 if i == j {
227 continue
228 }
229
230 // attempt to add both chains together
231 chain, ok := chains[i].tryMergeChain(chains[j])
232 if ok {
233 // If adding the chains together was successful,

remove inner chain from
234 // list
235 chains = append(chains[:j], chains[j+1:]...)
236 }
237
238 chains[i] = chain
239 }
240 }
241
242 // If no chains were merged in this pass, the chain can never

be built as a
243 // single list. Error.
244 if lastChainsLength == len(chains) {
245 return PEMBundle{}, errors.NewInvalidData("certificate

chain is malformed or broken")
246 }
247 }

We recommend enforcing a reasonable limit to the number of certificates thatParseSingleCertificateChain
can process in a single invocation.

cert-manager security audit 30

cert-manager security audit 2024-02-17

Redacted issue

Severity Low

id ADA-2023-CERTMAN-5

component Kubernetes sub-project

This is a redacted issue that was found in a Kubernetes sub-project during the audit. We have reported
the issue through official Kubernetes disclosure channels but have not received a response yet.

This issue is not a risk to cert-manager

cert-manager security audit 31

cert-manager security audit 2024-02-17

Servers are missing TimeOuts

Severity Low

id ADA-2023-CERTMAN-6

component cert-manager HTTP servers

The HTTP servers in cmd/cainjector/app/controller.go, cmd/controller/app/
controller.go, pkg/issuer/acme/http/solver/solver.go, and pkg/webhook/
server/server.go lack hardening against slow clients which an attacker could use to launch a
DDoS against cert-manager. The servers do not have Time-Out limits defined, and an attacker could
use this as a vector to send an excessive ammount of requests and hog all available connections. The
attacker would need to know of a way to make each request take time to process, and they would then
send enough requests so that the server would be stuck processing these requests. This would prevent
other users of the services from having their legitimate requests processed resulting in a Denial of
Service.

This require significant prerequisites to exploit. This issue does not identify an invocation path that
could allow an attacker to make cert-manager spend excessive time on requests. The issue only
identifies the lack of hardening against such cases.

The exposed servers are listed below:

Source

95 profilerMux := http.NewServeMux()
96 // Add pprof endpoints to this mux
97 profiling.Install(profilerMux)
98 log.V(logf.InfoLevel).Info("running go profiler on", "address",

opts.PprofAddress)
99 server := &http.Server{

100 Handler: profilerMux,
101 }

Source

106 profilerMux := http.NewServeMux()
107 // Add pprof endpoints to this mux
108 profiling.Install(profilerMux)
109 profilerServer := &http.Server{
110 Handler: profilerMux,
111 }

cert-manager security audit 32

https://github.com/wallrj/cert-manager/blob/05de99458770996f9c88b9765e7dbcb489d70949/cmd/cainjector/app/controller.go#L95-L101
https://github.com/wallrj/cert-manager/blob/f50167ce314aac9d52c8018409b262f560a34047/cmd/controller/app/controller.go#L106-L111

cert-manager security audit 2024-02-17

Source

93 h.Server = http.Server{
94 Addr: fmt.Sprintf(":%d", h.ListenPort),
95 Handler: handler,
96 }

Source

166 profilerMux := http.NewServeMux()
167 // Add pprof endpoints to this mux
168 profiling.Install(profilerMux)
169 s.log.V(logf.InfoLevel).Info("running go profiler on", "address

", s.PprofAddr)
170 server := &http.Server{
171 Handler: profilerMux,
172 }

cert-manager security audit 33

https://github.com/wallrj/cert-manager/blob/ab0cd57dc58fd73a76fd96bd9d1402bd5ae96582/pkg/issuer/acme/http/solver/solver.go#L93-L96
https://github.com/wallrj/cert-manager/blob/073d90611e7f6d5c1f916c1c5e0cb25ed28f66ae/pkg/webhook/server/server.go#L166-L172

cert-manager security audit 2024-02-17

Webhook reads requests into memory unbounded

Severity Moderate

id ADA-2023-CERTMAN-7

component cert-manager Webhook

cert-managers webhook is used to receive admission requests within Kubernetes. The webhook
handler receives raw HTTP requests from Kubernetes, and cert-manager processes them and returns
an admission decision to Kubernetes that acts on that decision.

cert-managers webhook handler reads the incoming requests into memory without a limit to the size
of the request. In a standard workflow when Kubernetes emits the requests to the webhook, this is
unlikely to be an issue. However, if the webhook is exposed to other services in the cluster, and the
attacker is able to send requests inside the cluster, they can exploit this by sending an HTTP request
with a large body. This would drain the memory of the node and cause DoS of the webhook, thereby
denying other users from validating admission requests.

cert-manager starts the Webhook on the following lines:

41 func NewServerCommand(stopCh <-chan struct{}) *cobra.Command {
42 ctx := cmdutil.ContextWithStopCh(context.Background(), stopCh)
43 log := logf.Log
44 ctx = logf.NewContext(ctx, log)
45
46 return newServerCommand(ctx, func(ctx context.Context,

webhookConfig *config.WebhookConfiguration) error {
47 log := logf.FromContext(ctx, componentWebhook)
48
49 srv, err := cmwebhook.NewCertManagerWebhookServer(log, *

webhookConfig)
50 if err != nil {
51 return err
52 }
53
54 return srv.Run(ctx)
55 }, os.Args[1:])
56 }

In the above code snippet, cert-manager creates a Webhook Server on line 49 and starts it on line 54 by
invoking (*Server).Run() which is implemented here:

119 func (s *Server) Run(ctx context.Context) error {

cert-manager security audit 34

https://github.com/cert-manager/cert-manager/blob/c4aa1ec50b0938a8a025e6a8f625c23a39bece2b/cmd/webhook/app/webhook.go#L41-L56
https://github.com/cert-manager/cert-manager/blob/c4aa1ec50b0938a8a025e6a8f625c23a39bece2b/pkg/webhook/server/server.go#L119

cert-manager security audit 2024-02-17

(*Server).Run() sets up three handlers:

1 serverMux := http.NewServeMux()
2 serverMux.HandleFunc("/validate", s.handle(s.validate))
3 serverMux.HandleFunc("/mutate", s.handle(s.mutate))
4 serverMux.HandleFunc("/convert", s.handle(s.convert))
5 server := &http.Server{
6 Handler: serverMux,
7 }

Each handler function is wrapped in a call to(*Server).handle(). This is the vulnerable function.
(*Server).handle() first reads the request, then decodes the object in the request, passes the
object onto the inner handler function and finally validates the result from the inner handler function.

When (*Server).handle() reads the request body on this line:

321 data, err := io.ReadAll(req.Body)

. . . it reads the request entirely into memory. This is the vulnerable line: cert-manager does not enforce
a limit to the size of the request body. As such, the requests sender can control the amount of memory
that cert-manager allocates with this call. This makes cert-manager susceptible to a Denial-of-Service
attack if an attacker sends a request containing a body with a size that exceeds the memory available.
Such a request will exhaust memory on the machine and cause the Go runtime to crash cert-manager
in an unrecoverable manner. Crashing the Webhook server would deny any other user from using it.
As such, a single attacker can prevent all other cluster users from using the validate, mutate and
convert endpoints.

To exploit this, an attacker needs to be able to send requests with larger body sizes to cert-manager.
This is likely to be difficult through requests to the Kubernetes APIServer, since most users will configure
a size limit through their Kubernetes settings. As such, an authenticated user of the cluster is unlikely
to be able to exploit this. The likely attacker of the vulnerability is one who has already manifested
themselves in the cluster and is able to send requests to the webhook directly.

PoC

Below, we include a simple PoC demonstrating the behavior of reading requests with a large body into
memory without enforcing a limit to the body size.

DISCLAIMER: Save all work on your machine before testing this: Including work in the browser.

To demonstrate this, we start a server and send a request to it with a large body.

First, start the following server:

1 package main

cert-manager security audit 35

https://github.com/cert-manager/cert-manager/blob/c4aa1ec50b0938a8a025e6a8f625c23a39bece2b/pkg/webhook/server/server.go#L321

cert-manager security audit 2024-02-17

2
3 import (
4 "fmt"
5 "io"
6 "net/http"
7)
8
9 func main() {

10 http.HandleFunc("/validate", func(w http.ResponseWriter, r *
http.Request) {

11 fmt.Println("Got request")
12 _, err := io.ReadAll(r.Body)
13 if err != nil {
14 return
15 }
16 fmt.Println("Finished reading body")
17 })
18
19 fmt.Printf("Starting server at port 8080\n")
20 if err := http.ListenAndServe(":8080", nil); err != nil {
21 panic(err)
22 }
23 }

Create this program and run it with go run main.go.

Next, send a request to the server. Create the following program and run it withgo run main.go:

1 package main
2
3 import (
4 "io"
5 "strings"
6 "net/http"
7)
8
9 func main() {

10 req := maliciousRequest()
11
12 _, err := http.DefaultClient.Do(req)
13 if err != nil{
14 panic(err)
15 }
16 }
17
18 func maliciousRequest() *http.Request {
19 s := strings.Repeat("malicious string", 100000000)
20 r1 := strings.NewReader(s)
21 r2 := strings.NewReader(s)
22 r3 := strings.NewReader(s)
23 r4 := strings.NewReader(s)

cert-manager security audit 36

cert-manager security audit 2024-02-17

24 r5 := strings.NewReader(s)
25 r6 := strings.NewReader(s)
26 r7 := strings.NewReader(s)
27 r8 := strings.NewReader(s)
28 r := io.MultiReader(r1, r2, r3, r4, r5, r6, r7, r8)
29 req, err := http.NewRequest("POST", "http://localhost:8080/

validate", r)
30 if err != nil {
31 panic(err)
32 }
33 return req
34 }

When sending the request, you should see “Got request” in the window running the server and that
the server will crash. The server will not print “Finished reading body”. Depending on your system, you
may need to change the size of the body.

cert-manager security audit 37

cert-manager security audit 2024-02-17

Out of Memory Denial of Service from malicious subject string

Severity Moderate

id ADA-2023-CERTMAN-8

component cert-manager PKI utilities

This is an issue in an alpha-feature.

The cert-manager PKI utility github.com/cert-manager/cert-manager/pkg/util/pki.
UnmarshalSubjectStringToRDNSequence is vulnerable to an Out-of-Memory (OOM) Denial
of Service (DoS) from a malicious subject string. The vulnerability requires an attacker to repeatedly
send malicious requests to UnmarshalSubjectStringToRDNSequence, which will drain the
memory of the node after a few requests. The malicious subject string that can cause the memory
drain is less than 100 characters long.

UnmarshalSubjectStringToRDNSequence is used in multiple places in cert-manager:

1. ValidateCertificateSpec: Validation routine for CertificateSpec. The routine
ValidateCertificateSpeconly invokesUnmarshalSubjectStringToRDNSequence
if the user has specified a literalSubject in the CertificateSpec.

2. RequestMatchesSpec: An API that matches the fields of a CertificateRequest with a
CertificateSpec and returns the fields that do not match.

3. GenerateCSR: Creates a CSR from a v1.Certificate. The user must opt-in to include
the Literal Subject in the CSR, and the v1.CertificateSpec must have a subject for
GenerateCSR to invoke UnmarshalSubjectStringToRDNSequence.

cert-manager security audit 38

	About Ada Logics
	Project dashboard
	Executive Summary
	Strategic recommendations

	cert-manager overview
	Ingress
	Pod-to-Pod mTLS

	Threat Model
	Threat actors
	Trust boundaries

	cert-manager dependencies
	Supply-chain threat model
	Scorecard
	Scorecard findings
	Mitigation
	Conclusions

	Fuzzing
	OSS-Fuzz infrastructure files
	Fuzzers

	Issues found
	Approved maintainers can push code to cert-manager without a pull request
	Use of deprecated third-party crypto APIs
	Large CloudFlare response can exhaust memory
	Loop iteration time controllable by input
	Redacted issue
	Servers are missing TimeOuts
	Webhook reads requests into memory unbounded
	PoC

	Out of Memory Denial of Service from malicious subject string

